Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mechanisms of iron- and O2-sensing by the [4Fe-4S] cluster of the global iron regulator RirA.

Identifieur interne : 000229 ( Main/Exploration ); précédent : 000228; suivant : 000230

Mechanisms of iron- and O2-sensing by the [4Fe-4S] cluster of the global iron regulator RirA.

Auteurs : Ma Teresa Pellicer Martinez [Royaume-Uni] ; Jason C. Crack [Royaume-Uni] ; Melissa Yy Stewart [Royaume-Uni] ; Justin M. Bradley [Royaume-Uni] ; Dimitri A. Svistunenko [Royaume-Uni] ; Andrew Wb Johnston [Royaume-Uni] ; Myles R. Cheesman [Royaume-Uni] ; Jonathan D. Todd [Royaume-Uni] ; Nick E. Le Brun [Royaume-Uni]

Source :

RBID : pubmed:31526471

Descripteurs français

English descriptors

Abstract

RirA is a global regulator of iron homeostasis in Rhizobium and related α-proteobacteria. In its [4Fe-4S] cluster-bound form it represses iron uptake by binding to IRO Box sequences upstream of RirA-regulated genes. Under low iron and/or aerobic conditions, [4Fe-4S] RirA undergoes cluster conversion/degradation to apo-RirA, which can no longer bind IRO Box sequences. Here, we apply time-resolved mass spectrometry and electron paramagnetic resonance spectroscopy to determine how the RirA cluster senses iron and O2. The data indicate that the key iron-sensing step is the O2-independent, reversible dissociation of Fe2+ from [4Fe-4S]2+ to form [3Fe-4S]0. The dissociation constant for this process was determined as Kd = ~3 µM, which is consistent with the sensing of 'free' iron in the cytoplasm. O2-sensing occurs through enhanced cluster degradation under aerobic conditions, via O2-mediated oxidation of the [3Fe-4S]0 intermediate to form [3Fe-4S]1+. This work provides a detailed mechanistic/functional view of an iron-responsive regulator.

DOI: 10.7554/eLife.47804
PubMed: 31526471
PubMed Central: PMC6748827


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mechanisms of iron- and O
<sub>2</sub>
-sensing by the [4Fe-4S] cluster of the global iron regulator RirA.</title>
<author>
<name sortKey="Pellicer Martinez, Ma Teresa" sort="Pellicer Martinez, Ma Teresa" uniqKey="Pellicer Martinez M" first="Ma Teresa" last="Pellicer Martinez">Ma Teresa Pellicer Martinez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Crack, Jason C" sort="Crack, Jason C" uniqKey="Crack J" first="Jason C" last="Crack">Jason C. Crack</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stewart, Melissa Yy" sort="Stewart, Melissa Yy" uniqKey="Stewart M" first="Melissa Yy" last="Stewart">Melissa Yy Stewart</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bradley, Justin M" sort="Bradley, Justin M" uniqKey="Bradley J" first="Justin M" last="Bradley">Justin M. Bradley</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Svistunenko, Dimitri A" sort="Svistunenko, Dimitri A" uniqKey="Svistunenko D" first="Dimitri A" last="Svistunenko">Dimitri A. Svistunenko</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Essex, Colchester, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biological Sciences, University of Essex, Colchester</wicri:regionArea>
<wicri:noRegion>Colchester</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Johnston, Andrew Wb" sort="Johnston, Andrew Wb" uniqKey="Johnston A" first="Andrew Wb" last="Johnston">Andrew Wb Johnston</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biological Sciences, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cheesman, Myles R" sort="Cheesman, Myles R" uniqKey="Cheesman M" first="Myles R" last="Cheesman">Myles R. Cheesman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Todd, Jonathan D" sort="Todd, Jonathan D" uniqKey="Todd J" first="Jonathan D" last="Todd">Jonathan D. Todd</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biological Sciences, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Le Brun, Nick E" sort="Le Brun, Nick E" uniqKey="Le Brun N" first="Nick E" last="Le Brun">Nick E. Le Brun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31526471</idno>
<idno type="pmid">31526471</idno>
<idno type="doi">10.7554/eLife.47804</idno>
<idno type="pmc">PMC6748827</idno>
<idno type="wicri:Area/Main/Corpus">000227</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000227</idno>
<idno type="wicri:Area/Main/Curation">000227</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000227</idno>
<idno type="wicri:Area/Main/Exploration">000227</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mechanisms of iron- and O
<sub>2</sub>
-sensing by the [4Fe-4S] cluster of the global iron regulator RirA.</title>
<author>
<name sortKey="Pellicer Martinez, Ma Teresa" sort="Pellicer Martinez, Ma Teresa" uniqKey="Pellicer Martinez M" first="Ma Teresa" last="Pellicer Martinez">Ma Teresa Pellicer Martinez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Crack, Jason C" sort="Crack, Jason C" uniqKey="Crack J" first="Jason C" last="Crack">Jason C. Crack</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Stewart, Melissa Yy" sort="Stewart, Melissa Yy" uniqKey="Stewart M" first="Melissa Yy" last="Stewart">Melissa Yy Stewart</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bradley, Justin M" sort="Bradley, Justin M" uniqKey="Bradley J" first="Justin M" last="Bradley">Justin M. Bradley</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Svistunenko, Dimitri A" sort="Svistunenko, Dimitri A" uniqKey="Svistunenko D" first="Dimitri A" last="Svistunenko">Dimitri A. Svistunenko</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of Essex, Colchester, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biological Sciences, University of Essex, Colchester</wicri:regionArea>
<wicri:noRegion>Colchester</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Johnston, Andrew Wb" sort="Johnston, Andrew Wb" uniqKey="Johnston A" first="Andrew Wb" last="Johnston">Andrew Wb Johnston</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biological Sciences, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cheesman, Myles R" sort="Cheesman, Myles R" uniqKey="Cheesman M" first="Myles R" last="Cheesman">Myles R. Cheesman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Todd, Jonathan D" sort="Todd, Jonathan D" uniqKey="Todd J" first="Jonathan D" last="Todd">Jonathan D. Todd</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Biological Sciences, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>School of Biological Sciences, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Le Brun, Nick E" sort="Le Brun, Nick E" uniqKey="Le Brun N" first="Nick E" last="Le Brun">Nick E. Le Brun</name>
<affiliation wicri:level="1">
<nlm:affiliation>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich</wicri:regionArea>
<wicri:noRegion>Norwich</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">eLife</title>
<idno type="eISSN">2050-084X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Electron Spin Resonance Spectroscopy (MeSH)</term>
<term>Iron (metabolism)</term>
<term>Iron-Sulfur Proteins (chemistry)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxygen (metabolism)</term>
<term>Proteolysis (MeSH)</term>
<term>Rhizobium (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Fer (métabolisme)</term>
<term>Ferrosulfoprotéines (composition chimique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Oxygène (métabolisme)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéolyse (MeSH)</term>
<term>Rhizobium (métabolisme)</term>
<term>Spectrométrie de masse (MeSH)</term>
<term>Spectroscopie de résonance de spin électronique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Iron-Sulfur Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Iron</term>
<term>Iron-Sulfur Proteins</term>
<term>Oxygen</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Fer</term>
<term>Ferrosulfoprotéines</term>
<term>Oxygène</term>
<term>Protéines bactériennes</term>
<term>Rhizobium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electron Spin Resonance Spectroscopy</term>
<term>Mass Spectrometry</term>
<term>Oxidation-Reduction</term>
<term>Proteolysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Oxydoréduction</term>
<term>Protéolyse</term>
<term>Spectrométrie de masse</term>
<term>Spectroscopie de résonance de spin électronique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">RirA is a global regulator of iron homeostasis in
<i>Rhizobium</i>
and related α-proteobacteria. In its [4Fe-4S] cluster-bound form it represses iron uptake by binding to IRO Box sequences upstream of RirA-regulated genes. Under low iron and/or aerobic conditions, [4Fe-4S] RirA undergoes cluster conversion/degradation to apo-RirA, which can no longer bind IRO Box sequences. Here, we apply time-resolved mass spectrometry and electron paramagnetic resonance spectroscopy to determine how the RirA cluster senses iron and O
<sub>2</sub>
. The data indicate that the key iron-sensing step is the O
<sub>2</sub>
-independent, reversible dissociation of Fe
<sup>2+</sup>
from [4Fe-4S]
<sup>2+</sup>
to form [3Fe-4S]
<sup>0</sup>
. The dissociation constant for this process was determined as
<i>K</i>
<sub>d</sub>
= ~3 µM, which is consistent with the sensing of 'free' iron in the cytoplasm. O
<sub>2</sub>
-sensing occurs through enhanced cluster degradation under aerobic conditions, via O
<sub>2</sub>
-mediated oxidation of the [3Fe-4S]
<sup>0</sup>
intermediate to form [3Fe-4S]
<sup>1+</sup>
. This work provides a detailed mechanistic/functional view of an iron-responsive regulator.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31526471</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">2050-084X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<PubDate>
<Year>2019</Year>
<Month>09</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>eLife</Title>
<ISOAbbreviation>Elife</ISOAbbreviation>
</Journal>
<ArticleTitle>Mechanisms of iron- and O
<sub>2</sub>
-sensing by the [4Fe-4S] cluster of the global iron regulator RirA.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.7554/eLife.47804</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">e47804</ELocationID>
<Abstract>
<AbstractText>RirA is a global regulator of iron homeostasis in
<i>Rhizobium</i>
and related α-proteobacteria. In its [4Fe-4S] cluster-bound form it represses iron uptake by binding to IRO Box sequences upstream of RirA-regulated genes. Under low iron and/or aerobic conditions, [4Fe-4S] RirA undergoes cluster conversion/degradation to apo-RirA, which can no longer bind IRO Box sequences. Here, we apply time-resolved mass spectrometry and electron paramagnetic resonance spectroscopy to determine how the RirA cluster senses iron and O
<sub>2</sub>
. The data indicate that the key iron-sensing step is the O
<sub>2</sub>
-independent, reversible dissociation of Fe
<sup>2+</sup>
from [4Fe-4S]
<sup>2+</sup>
to form [3Fe-4S]
<sup>0</sup>
. The dissociation constant for this process was determined as
<i>K</i>
<sub>d</sub>
= ~3 µM, which is consistent with the sensing of 'free' iron in the cytoplasm. O
<sub>2</sub>
-sensing occurs through enhanced cluster degradation under aerobic conditions, via O
<sub>2</sub>
-mediated oxidation of the [3Fe-4S]
<sup>0</sup>
intermediate to form [3Fe-4S]
<sup>1+</sup>
. This work provides a detailed mechanistic/functional view of an iron-responsive regulator.</AbstractText>
<CopyrightInformation>© 2019, Pellicer Martinez et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Pellicer Martinez</LastName>
<ForeName>Ma Teresa</ForeName>
<Initials>MT</Initials>
<AffiliationInfo>
<Affiliation>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Crack</LastName>
<ForeName>Jason C</ForeName>
<Initials>JC</Initials>
<AffiliationInfo>
<Affiliation>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Stewart</LastName>
<ForeName>Melissa Yy</ForeName>
<Initials>MY</Initials>
<AffiliationInfo>
<Affiliation>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bradley</LastName>
<ForeName>Justin M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Svistunenko</LastName>
<ForeName>Dimitri A</ForeName>
<Initials>DA</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of Essex, Colchester, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Johnston</LastName>
<ForeName>Andrew Wb</ForeName>
<Initials>AW</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of East Anglia, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheesman</LastName>
<ForeName>Myles R</ForeName>
<Initials>MR</Initials>
<AffiliationInfo>
<Affiliation>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Todd</LastName>
<ForeName>Jonathan D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>School of Biological Sciences, University of East Anglia, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Le Brun</LastName>
<ForeName>Nick E</ForeName>
<Initials>NE</Initials>
<Identifier Source="ORCID">0000-0001-9780-4061</Identifier>
<AffiliationInfo>
<Affiliation>Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/E003400/1</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/J003247/1</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>BB/L006140/1</GrantID>
<Acronym>BB_</Acronym>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>CA15133</GrantID>
<Agency>Horizon 2020 Framework Programme</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Elife</MedlineTA>
<NlmUniqueID>101579614</NlmUniqueID>
<ISSNLinking>2050-084X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>S88TT14065</RegistryNumber>
<NameOfSubstance UI="D010100">Oxygen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004578" MajorTopicYN="N">Electron Spin Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010100" MajorTopicYN="N">Oxygen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059748" MajorTopicYN="N">Proteolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012231" MajorTopicYN="N">Rhizobium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">DNA regulation</Keyword>
<Keyword MajorTopicYN="Y">EPR</Keyword>
<Keyword MajorTopicYN="Y">biochemistry</Keyword>
<Keyword MajorTopicYN="Y">chemical biology</Keyword>
<Keyword MajorTopicYN="Y">iron sensor</Keyword>
<Keyword MajorTopicYN="Y">iron-sulfur</Keyword>
<Keyword MajorTopicYN="Y">mass spectrometry</Keyword>
<Keyword MajorTopicYN="Y">rhizobia</Keyword>
</KeywordList>
<CoiStatement>MP, JC, MS, JB, DS, AJ, MC, JT, NL No competing interests declared</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31526471</ArticleId>
<ArticleId IdType="doi">10.7554/eLife.47804</ArticleId>
<ArticleId IdType="pii">47804</ArticleId>
<ArticleId IdType="pmc">PMC6748827</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Microbiology. 2014 Jan;160(Pt 1):79-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24194559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Chem. 2004 Oct;25(13):1605-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15264254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2016 Jan 21;52(6):1174-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26603589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2006 Jan;14(1):129-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jul 14;281(28):18909-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16717103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18408-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16352732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemistry. 2019 Mar 7;25(14):3675-3684</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30600851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2012 Apr;16(1-2):35-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22387135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2014;1122:33-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24639252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2000 Apr 1;72(7):1410-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10763234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Sci. 2017 Dec 1;8(12):8451-8463</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29619193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Soc Rev. 2012 Jun 7;41(11):4335-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22532017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2016 Oct;40:136-144</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27721169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2006 Apr;1757(4):262-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16626626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1987 Aug 25;26(17):5471-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2823881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1983 Jun;131(2):373-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6614472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1983 Apr 15;222(2):333-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6342537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2013 Apr;8(4):639-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23471109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Nov 3;8(1):1280</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29097667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12785-12790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29133393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Soc Rev. 2011 Mar;40(3):1224-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21173980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2008 Feb 6;130(5):1749-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18186637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Sci. 2018 Jan 7;9(1):105-118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29399317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):14895-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11742080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):E3215-E3223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28373574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2015 Jun;28(3):567-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25782577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2006 Jul;30(4):631-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16774589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metallomics. 2016 Jul 13;8(7):709-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27197762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Feb 12;20(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30759803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2092-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17267605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2006 Jun;275(6):564-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16625355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2003 May;149(Pt 5):1357-1365</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12724397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Oct 10;134(40):16578-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22985343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2013 Jun;20(6):740-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23644595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1996 Apr;3(4):382-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8599765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Proteomics. 2005 Aug;2(4):475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16097882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2015 Jul;11(7):442-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26083061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2009 Apr;191(7):2083-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19168612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2002 Dec;148(Pt 12):4059-4071</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12480909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2004 Dec;150(Pt 12):4065-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15583159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2003 Jun;27(2-3):215-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12829269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Anal Chem. 2012;2012:282574</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22611397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Oct;71(10):5969-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16204511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2005 Apr;273(2):197-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15856304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1997 Jun;167(6):376-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9148780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2005;74:247-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15952888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Feb;47(4):903-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12581348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D313-D319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 1999 Apr;3(2):152-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10226040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biometals. 2007 Jun;20(3-4):485-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17216355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2014 Oct 21;47(10):3196-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25262769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2005 May 15;246(2):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15899411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Aug 1;277(5326):653-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9235882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Oct 18;44(41):13553-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16216078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem Biophys Methods. 1993 Aug;27(1):25-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8409208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Apr 20;8:15052</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28425466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Apr 13;282(15):11230-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17307737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1996 Jun 1;237(2):260-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8660575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2006 Sep 27;128(38):12473-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16984198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13635-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8942986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 May 15;290(20):12689-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25771538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2006 Feb;59(4):1073-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16430685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2014 Dec 15;53(51):14002-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25354304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2010 Nov;161(6):1219-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20132208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1983 Sep 25;258(18):11106-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6309830</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Pellicer Martinez, Ma Teresa" sort="Pellicer Martinez, Ma Teresa" uniqKey="Pellicer Martinez M" first="Ma Teresa" last="Pellicer Martinez">Ma Teresa Pellicer Martinez</name>
</noRegion>
<name sortKey="Bradley, Justin M" sort="Bradley, Justin M" uniqKey="Bradley J" first="Justin M" last="Bradley">Justin M. Bradley</name>
<name sortKey="Cheesman, Myles R" sort="Cheesman, Myles R" uniqKey="Cheesman M" first="Myles R" last="Cheesman">Myles R. Cheesman</name>
<name sortKey="Crack, Jason C" sort="Crack, Jason C" uniqKey="Crack J" first="Jason C" last="Crack">Jason C. Crack</name>
<name sortKey="Johnston, Andrew Wb" sort="Johnston, Andrew Wb" uniqKey="Johnston A" first="Andrew Wb" last="Johnston">Andrew Wb Johnston</name>
<name sortKey="Le Brun, Nick E" sort="Le Brun, Nick E" uniqKey="Le Brun N" first="Nick E" last="Le Brun">Nick E. Le Brun</name>
<name sortKey="Stewart, Melissa Yy" sort="Stewart, Melissa Yy" uniqKey="Stewart M" first="Melissa Yy" last="Stewart">Melissa Yy Stewart</name>
<name sortKey="Svistunenko, Dimitri A" sort="Svistunenko, Dimitri A" uniqKey="Svistunenko D" first="Dimitri A" last="Svistunenko">Dimitri A. Svistunenko</name>
<name sortKey="Todd, Jonathan D" sort="Todd, Jonathan D" uniqKey="Todd J" first="Jonathan D" last="Todd">Jonathan D. Todd</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000229 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000229 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31526471
   |texte=   Mechanisms of iron- and O2-sensing by the [4Fe-4S] cluster of the global iron regulator RirA.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31526471" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020